If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+4y=17
We move all terms to the left:
y^2+4y-(17)=0
a = 1; b = 4; c = -17;
Δ = b2-4ac
Δ = 42-4·1·(-17)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{21}}{2*1}=\frac{-4-2\sqrt{21}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{21}}{2*1}=\frac{-4+2\sqrt{21}}{2} $
| 6t-8t=10 | | 50+(2y-3)+(180-3y)=180 | | x+2x+2x+3=128 | | 3x-8+3x-10=30 | | 2(x+4)=-5x+1x= | | 600=118x | | Xx-5=60 | | (2)/(3)x-(1)/(5)x=x-2 | | 3=4/5(h+2) | | 2b+b+4b-4b-b=20 | | 11(16-f)=20 | | 2(9-f)=20 | | 2x-11+5x-14=45 | | −19=m+9 | | 19c-18c-c+c=16 | | 1x+362=54 | | -5(0.1x-10.5)=125.25 | | 19c−18c−c+c=16 | | g+2(3+g)=4(9+1) | | 14a-12a-2a+2a=20 | | (-3y-20)(2y+13)=180 | | c−8=−8 | | 3/5k=3 | | 159=114-v | | 63=45+x | | 2+4(x+1)=8 | | 228=2w+2(2w+6) | | (20x+10)+(3x+9)=90 | | y/5=−8 | | b-3+5b=12-9b | | 4x-8+5x-10=90 | | 5+12+15p=510 |